Welcome to the “Health and Welfare” segment of the Newsletter. It is hoped that DCA members will submit ideas for this section of the magazine as well as articles about experiences pertaining to the healthcare of their dogs that will be of interest to other readers.

Please send ideas, suggestions and articles to: Charlotte Borghardt, DCA Health & Welfare Committee, P.O. Box 1126, Sierra Vista, AZ 85636-1126, teckelhofaz@yahoo.com

Cancer Stem Cells

A New Way to Look at an Old Disease

By Jaime Modiano, VMD, PhD:
University of Minnesota

Cancer and Public Health

Undoubtedly, cancer is among the conditions that will have the most significant impact on the health and well being of people and their pets during the 21st century. The entity that is cancer has been recognized since the times of the ancient Greeks, but it was only the latter part of the 20th century that we began to understand why cancer happens. As the art and science of medicine and veterinary medicine reduced morbidity and mortality from other causes and the expected lifespan increased, cancer became more prevalent in the human and canine populations. Today, cancer is the leading cause of death in people under the age of 85, and it is the most common cause of disease-related death in dogs. It is estimated that 30% of people and dogs will get cancer in their lifetime and in dogs, more than half of those affected will die from their disease.

Despite these grim statistics, we cannot ignore advances that we have achieved in diagnosis and treatment of cancer. With proper standard of care, cancer patients can reasonably expect to add at least 10% of a lifetime after their diagnosis and many patients survive cancer and lead normal productive and healthy lives. Because cures are difficult to define, the treatment goal today is to make cancer a manageable chronic disease.

Improved application of existing therapies (surgery, chemotherapy and radiation) as well as new therapies coming on line can achieve this for a large number of patients. However, sometimes the price is too high – either because the side effects are unacceptable or because the treatment is cost prohibitive. Both of these are greater obstacles in veterinary medicine, where quality of life is paramount and where health care reimbursements from insurance are not the norm. It is this segment of the population, then, that most preoccupies us and fuels our desire to continue probing the inner workings of cancer so that we can realistically design better strategies to prevent, diagnose and treat this condition.

Cancer as a Disease of Stem Cells

With that background, we can appreciate the importance of thinking outside the box. What if we ask questions about why we fail so often, as opposed to trying incrementally build small gains? It is
this type of thinking that has led to a revised theory about the origins of cancer that may revolutionize how we approach this disease.

For over 40 years, we have known that cancers arise from the single cell (clonal expansion) and that a series of mutations are necessary for the cell of origin to acquire the malignant phenotype. However, the dominant theory assumed that all cells possessed an equal capacity for self-renewal. It also assumed that proliferation was a stochastic (“random”) process driven entirely by environmental selection of favorable mutations. However, self-renewal and differentiation potential are the key elements that define what a stem cell is. So a competing theory now exists whose main tenet is that cancer is a consequence of malignant transformation of cells that retain properties of stem cells, but harbor defined mutations that endow them with malignant properties. It is not entirely a different concept, but simply a different way of looking at the same data, and it is intellectually satisfying because it explains much about cancer that was difficult to reconcile with the old models.

Do Cancer Stem Cells Really Exist?
The existence of cancer stem cells is now documented; they are characterized by peculiar phenotypes, by defined sets of genetic mutations, and by their ability to form tumors that can be serially passaged in laboratory animals. In the case of lymphoma or leukemia, over 1 in 250,000 tumor cells has the properties that define a cancer stem cell. Similar results have been obtained for a variety of solid tumors, although much work remains to be done to define the “cancer stem cell” of many types of cancer.

Clinical Implications of Cancer Stem Cells
The cancer stem cell model can explain various paradoxical findings regarding tumors and their natural history. It accounts for the relatively small numbers of genes that are disproportionately associated with a multitude of cancers, for the ability of multicellular organisms (like people and dogs) to reach reproductive age and attain long lines without cancer, and perhaps most importantly, for the observed nature of tumor relapse and metastasis. Cancer stem cells divide infrequently and are thus resistant to most of the types of treatments we use for cancer (which rely on killing rapidly dividing cells). Even though they divide rarely, cancer stem cells have the potential to regenerate the full complement of progeny that originally comprised the tumor. Thus, failure to eliminate cancer stem cells with – or after cessation of – chemotherapy sets the stage for tumor re-growth and relapse, which would not occur if the surviving cells lacked capacity for self-renewal. The acquisition of additional mutations, possibly due to the therapy itself, allows the remaining cancer stem cells to generate new progeny with enhanced survivability in novel environments, favoring aggressive, metastatic phenotypes. This suggests that, in order to achieve sustained remissions, we will need to devise treatment regimens that target the cancer stem cell compartment.

Cancer Stem cells and Canine Tumors
The stem cell theory of cancer has not been conclusively proven in dogs, but we have seen subpopulations of cells in hemangiosarcoma and lymphoma that have phenotypes consistent with stem cell origin. For hemangio-sarcoma, we extended these observations to define a phenotype that firmly established the bone marrow origin of this tumor, and allowed us to distinguish hemangio-sarcoma cells from other bone-marrow derived cells and from normal circulating endothelial cells. This led to the development of a useful diagnostic test for hemangiosarcoma. More recently, we have shown that the tumors harbor specific subpopulations that retain the “primitive” (stem cell –like) characteristics and may harbor unique gene expression signatures. In fact, the relative frequency of these cells may explain the observed differences in the clinical behavior of these tumors. Our current work focuses on defining these cancer stem cell populations and their usefulness to predict responses to standard of care, as well as to identify new treatments to effectively target these cells. The premise that appropriate activation of the immune system might be able to eliminate both the cancer stem cells and their progeny is among the concepts that we plan to explore in an ongoing clinical trial for osteosarcoma that is supported jointly by the NCI and the AKC CHF.